Nuevo Paradigma Productivo

Cuencas Bioenergéticas en Origen CBO

Una Propuesta productiva Integral

Asociación Argentina del Cultivo Protegido AACP

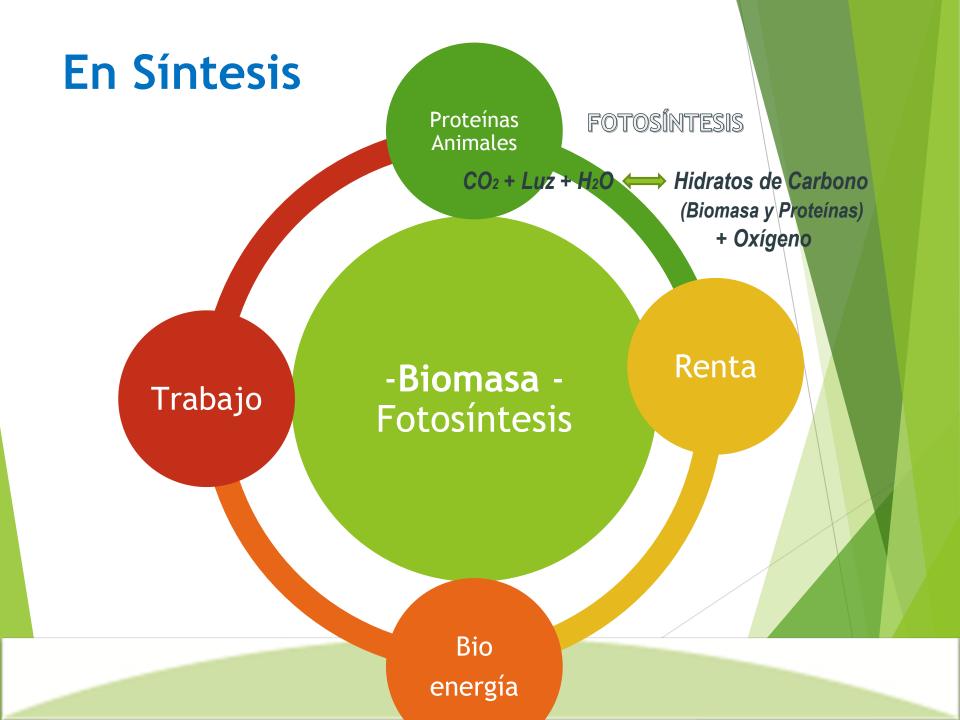
Miguel Santiago Campos, Ph.D mcampos@aacp.org.ar

Calentamiento Global

Cambio Climático Agricultura

Adaptación y Mitigación

- Reducción de emisión de GEI
 - ► Uso de B10 B100 en Agricultura e hidro-vías
- Captura de Carbono Biomasa
- Energías Renovables (Biomasa Cogeneración)
- Nuevos esquemas productivos (+ Sustentables)
- Nuevas cadenas de valor (Pellets Cuencas dieseleras)
- Uso eficiente de la luz, el agua y los nutrientes
- Manipulación Climática Virtuosa (MCV)


Cambio Climático Agricultura

Ventajas Comparativas y Competitivas

- Disponibilidad de tierras para la producción
- Disponibilidad de recursos hídricos
- Alta capacidad de Captura de Carbono (Latitud)
- Nuevas cuencas productivas (Megatérmicas Bambú)
- Alta diversidad de biotipos (Animal y Vegetal)
- Sistemas Agroforestales y Silvo-pastoriles

Necesidad de Energías renovables

- Por que las necesitamos?
 - Déficit creciente de energía
 - ► Energía eléctrica prácticamente desde combustibles fósiles Vaca Muerta???
 - ► Falta de infraestructura SIN
 - Falta de energía genera:
 - ► Importaciones crecientes
 - Limita el crecimiento local
 - ► Nos obliga al uso de renovables:
 - ► Eólica, Solar y Biomasa

Biomasa

- ► Leña (50%)
- Pellets (Europa)
- Biocombustibles
 - ► Biodiésel Bioetanol (1ra generación)
 - ► Biogás (Fermentación)
 - Syngas (Pirolisis)
 - ► Diésel Sintético de Biomasa (DSB)

Recordemos... El petróleo no es más que fotosíntesis ente<mark>rrada</mark> a presión por millones de años ...

Para que esperar tanto!!!

Biomasa para energía

- Residuos forestales
- Residuos solidos urbanos (RSU)
- Cultivos anuales y perennes (Mega térmicas Maíz Trigo - Sorgo - Bambú)
- Residuos carbonados de industria alimentaria (Maní -Aceituna - Citrus)
- Rastrojos de cultivos anuales
- ... Y hasta residuos plásticos
- Nos permite el aporte de divisas a la comunidad por bonos de carbono (compensación de emisiones)

Biomasa: Por qué es importante su aporte energético?

- Necesidad de diversificar la matriz energética (87%)
- Demanda creciente de energía eléctrica (limita PBI)
 - Desarrollo local
- Importaciones crecientes de hidrocarburos
 - Sustitución efectiva de importaciones
- ► Alcanzar el 10% de participación con energías renovables en 10 años.
- Complementarse con el SIN
- Agregado de Valor en Origen

Trasformación de la Biomasa en Energía Biogas vs DSB o Syngas

- Los dos grupos parten de biomas vegetales
- El biogás se logra por fermentación, mientras que los otros dos es por síntesis.
- El proceso de fermentación del biogás no permite la degradación de la lignina (solo vegetales verdes)
 - Por eso es necesario ensilar el cultivo (costos mas altos)
- Preparación diferencial del material a procesar
 - Contenido de humedad
 - Tamaño de partículas
 - Logística de transporte

Biogás

- Es el producto de la fermentación anaeróbica donde el gas predominante es el metano (CH4), aproximadamente 50%, que luego es reutilizado para la generación de energía eléctrica (motor CI) o térmica.
- Proceso: Hidrolisis Acidificación Metanogénesis
- Gas natural: 1m3 = genera 10 kwh
- ▶ 1ra eficiencia: Valor calórico en Trasmisión (Combustible): 50%
- 2da eficiencia: Transmisión en Electricidad (Motor): 40%

Así: 50% CH4 * 40% * 10 kwh = 2 kwh... implica que para 1 MWh necesito 500 m3 de biogás

```
...Como?? SILO DE MAIZ + RESIDUOS ORGANICOS

9 1

1MWh: 2,5 ton : 0,27 ton

500 M3
```

Biogás simulación 1MW

Valores producción de una planta de 1MW

	Potencia MW	Por día (24h)	Por semana (7d)	Por mes (30,5d)	Por año (8760h * 90%)
Demanda de Biogás (m3 con 510% de metano)	500 m3	12.000 m3	84.000 m3	366.125 m3	3.943.350 m3
Producción de energía eléctrica	1,0 MW	24,0 MWh	168 MWh	732 MWh	7.908 MWh
Producción de energía térmica	1,1 MW	25,2 MWh	176 MWh	769 MWh	8.304 MWh

Demanda de materia prima

	1	Ш	Ш	IV	V	VI	VII	VIII	IX	X
Ocupacion de la planta (%)	80	80	100	90	100	90	100	100	90	100
Demanda de maíz (Ton)	17920	17920	22400	20190	22400	20190	22400	22400	20190	22400
Demanda de Estiercol (m3)	28000	28000	35000	31500	35000	31500	35000	35000	31500	35000

600 has de Maíz + Criadero cerdo de 1.000 madres

Nota: imaginen costos de Logística de manejo y Trasporte

Diésel Sintético de Biomasa DSB

Proceso: Depolimerización Catalítica

- Acepta materiales ligno-celulósico (hasta madera)
- Niveles de humedad inferiores al 15%
- A menos tamaño de partículas mayor eficiencia del proceso
- Fácil manipuleo
- Menores costo de logística
- Acepta rastrojo de cultivos anuales: Cuenca Bioenergéticas de Base Agrícola (trigo - maíz - maní)
- A diferencia de los biocombustibles de 1ra generación, se complementa y no compite con la producción de alimentos
- > 3-4 kg de materia seca genera 1 litro de Diésel

Precio equipo: U\$ 2,5 MM - Costo total por Litro: 0,50 U\$/Litro - TIR: 30%

DSB: Simulación

3-4 kg de MS	1 litro Diésel			
3-4 kg de MS	9000 Kcal = 10 KWh			
3-4 kg de MS	1 m3 gas natural			
3-4 kg de MS	2 m3 de biogás			
1 ton de MS	500 m3 de biogás			
1 ton de MS	1 MWh			

250 l/h

6000
l/días

24 Ton
MS/ día

Recordemos que para 1MWh necesitábamos 2,4 ton de silo de maíz.

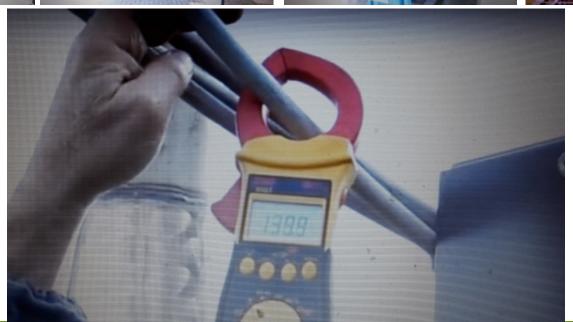
Esto se logra con menos de 2000 has de rastrojos de trigo y maíz o con 8760 ton al año de cascara de maní.

Syngas: Síntesis de gas pobre

Desde la biomasa se obtiene por calor y destilación una mezcla de gases – **no iónicos**

- La relación de precio por MWh instalado y MWH efectivamente entregado, es la más baja del mercado, comprada con cualquier tipo de tecnología (solar, eólica, biogas, microhidráulica, etc.)
- El costo operativo para producir 1 MWh de energía eléctrica es inferior a U\$S 15
- Costo del equipo para 1 MW : U\$2,8MM
- Modulo mínimo: 150 KW

Generalidades


- Se trata de un sistema modular
- Posee el máximo rendimiento energético
- Cumple todas las normativas vigentes
- Es ambientalmente amigable
- Procesa cualquier materia o residuo orgánico
- Tiene muy buena relación precio-beneficio económico
- Es un producto de construcción 100% nacional

Materias primas que pueden ser convertidas en Syngas

- Como principio, cualquier biomasa compuesta por cadenas de carbono puede ser convertida en gas de síntesis.
- A título ejemplificativo, se puede gasificar:
 - Residuos forestales de todo tipo
 - Residuos de la agricultura de todo tipo
 - Cáscaras de maní, arroz y de cualquier otro tipo
 - Plásticos, gomas y cauchos de todo tipo
 - Restos orgánicos de la industria alimenticia
 - Compost de cualquier materia prima
 - Residuos de la industria equina y avícola
 - Los residuos sólidos urbanos

Resumen

Para la misma obtención de energía:

MUCHAS GRACIAS

Miguel Santiago Campos, Ph.D msc.bionegocios@gmail.com